2 research outputs found

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): geological-evolutionary model and numerical analysis

    No full text
    This paper presents the results of a study on a deep-seated gravitational slope deformation affecting the eastern slope of the Mt. Rocchetta ridge (central Apennines, Italy). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. An equivalent continuum approach was adopted to characterize the rock mass with some modification for the temporal and spatial scale of the process. A visco-elastic-plastic rheological model was adopted for the numerical analysis, which also took into account the groundwater flow feeding the Capo Volturno spring. The results of the numerical analysis are consistent with the observed geomorphic evidence and suggest a morpho-evolutionary model of the ridge characterized by an initial phase of rock mass creep followed by a rock mass spreading process, mainly controlled by the viscous behaviour but with a significant contribution from groundwater for the smaller scale instabilities
    corecore